IMMUNE SUPPORT

Immune Support

Artem Blagodatski, Margarita Yatsunskaya, Valeriia Mikhailova, Vladlena Tiasto, Alexander Kagansky, Vladimir L. Katanaev. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018, 9 (49) , 29259-29274. https://doi.org/10.18632/oncotarget.25660

FDA Approves Bastyr Turkey Tail Trial for Cancer Patients https://bastyr.edu/news/general-news/2012/11/fda-approves-bastyr-turkey-tail-trial-cancer-patients

Gao Y. H, Zhou S. F, Jiang W. Q, Huang M, Sai X. H. Effects of Ganopoly (a Ganoderma lucidum polysaccharide extract) on immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32:201–15.

National Cancer Institute – Medicinal Mushrooms (Physician Data Query) https://www.cancer.gov/about-cancer/treatment/cam/patient/mushrooms-pdq

PDQ Integrative, Alternative, and Complementary Therapies Editorial Board. Medicinal Mushrooms (PDQ®): Patient Version. 2022 Jul 29. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-.

Suk-kyung Ko, Mirim Jin, Myoung-yun Pyo. (2011, October 11). Inonotus obliquus extracts suppress antigen-specific IgE production through the modulation of Th1/Th2 cytokines in ovalbumin-sensitized mice. ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0378874111005009?via%3Dihub

National Cancer Institute – Medicinal Mushrooms (Physician Data Query) https://www.cancer.gov/about-cancer/treatment/cam/patient/mushrooms-pdq

Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines. 2020 May 25;8(5):135. doi: 10.3390/biomedicines8050135. PMID: 32466253; PMCID: PMC7277906. 

Guggenheim, A. G., Wright, K. M., & Zwickey, H. L. (2014). Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology. Integrative medicine (Encinitas, Calif.), 13(1), 32–44.

Kim SP, Kang MY, Choi YH, Kim JH, Nam SH, Friedman M. Mechanism of Hericium erinaceus (Yamabushitake) mushroom-induced apoptosis of U937 human monocytic leukemia cells. Food Funct. 2011;2:348–56.

Zan XY, Cui FJ, Li YH, Yang Y, Wu D et al. Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis, Int. J. Biol. Macromol. 2015;76:242–253.

Guo, Z., et al., Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int J Mol Med, 2020. 45(1): p. 141-150.

Jiang J, Slivova V, Valachovicova T, Harvey K, Sliva D. Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol. 2004;24:1093–9.

Hong K. J, Dunn D. M, Shen C. L, Pence B. C. Effects of Ganoderma lucidum on apoptotic and anti-inflammatory function in HT-29 human colonic carcinoma cells. Phytother Res. 2004;18:768–70.

Cao Q. Z, Lin Z. B. Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. Life Sci. 2006;78:1457–63.

Fritz H, Kennedy DA, Ishii M, Fergusson D, Fernandes R, Cooley K, Seely D. Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther. 2015 May;14(3):201-11. doi: 10.1177/1534735415572883. Epub 2015 Mar 17. PMID: 25784670.

Standish LJ, Wenner CA, Sweet ES, et al. Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol. 2008;6(3):122-128.

Borchers A. T, Stern J. S, Hackman R. M, Keen C. L, Gershwin M. E. Minireview: Mushrooms, tumors and immunity. Proc Soc Exp Biol Med. 1999;221:281–93.

Miyazaki T, Nishijima M. Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of Ganoderma lucidum. Chem Pharm Bull. 1981;29:3611–16.

Mizuno T, Wasa T, Ito H, Suzuki C, Ukai N, Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou, Biosci. Biotechnol. Biochem. 1992;56:347–348.

Kenneth Quayle, Catherine Coy, Leanna Standish, Hailing Lu. (2014, December 16). The TLR2 agonist in polysaccharide-K is a structurally distinct lipid which acts synergistically with the protein-bound β-glucan. SpringerLink. https://link.springer.com/article/10.1007/s11418-014-0879-z

Finimundy TC, Gambato G, Fontana R, Camassola M, Salvador M, Moura S, Hess J, Henriques JA, Dillon AJ, Roesch-Ely M. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr Res. 2013 Jan;33(1):76-84. doi: 10.1016/j.nutres.2012.11.005. Epub 2012 Dec 6. PMID: 23351413.

Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. 2011 Jan 1;17(1):67-76. doi: 10.1158/1078-0432.CCR-10-1763.Epub 2010 Nov 10.

Toshihiro Akihisa, Yuji Nakamura, Masaaki Tagata, Harukuni Tokuda, Ken Yasukawa, Emiko Uchiyama, Takashi Suzuki, Yumiko Kimura. (2007, February 20). Anti-Inflammatory and Anti-Tumor-Promoting Effects of Triterpene Acids and Sterols from the Fungus Ganoderma lucidum. Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/cbdv.200790027

Joint Support

Elsayed, E. A., El Enshasy, H., Wadaan, M. A., & Aziz, R. (2014). Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators of inflammation, 2014, 805841. https://doi.org/10.1155/2014/805841NLM

Feng X, Wang Y. Anti-inflammatory, anti-nociceptive and sedative-hypnotic activities of lucidone D extracted from Ganoderma lucidum. Cell Mol Biol (Noisy-le-grand). 2019 Apr 30;65(4):37-42. PMID: 31078150.

Xia Feng, Yan Wang. (2019, April 30). Anti-inflammatory, anti-nociceptive and sedative-hypnotic activities of lucidone D extracted from Ganoderma lucidum. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/31078150/

Tan L, Song X, Ren Y, Wang M, Guo C, Guo D, Gu Y, Li Y, Cao Z, Deng Y. Anti-inflammatory effects of cordycepin: A review. Phytother Res. 2020 Oct 8. doi: 10.1002/ptr.6890. Epub ahead of print. PMID: 33090621.

Elsayed EA, El Enshasy H, Wadaan MA, Aziz R. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm2014;2014:805841doi: 10.1155/2014/805841. Epub 2014 Nov 23. PMID: 25505823; PMCID: PMC4258329. 

Popov, M. (2021, November 18). White Fungus: one mushroom, many names, many benefits. Mushrooms Health. https://mushroomhealth.org/2021/11/18/white-fungus-one-mushroom-many-names-many-benefits/?cn-reloaded=1

Lam FF, Ko IW, Ng ES, Tam LS, Leung PC, Li EK. Analgesic and anti-arthritic effects of Lingzhi and San Miao San supplementation in a rat model of arthritis induced by Freund's complete adjuvant. J Ethnopharmacol. 2008 Oct 30;120(1):44-50. doi: 10.1016/j.jep.2008.07.028. Epub 2008 Jul 30. PMID: 18708134.

Lee, Y. J., Kim, Y. J., Kim, S. B., & Kim, H. J. (2013). The anti-inflammatory effects of water extract from Tremella fuciformis on lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Journal of Medicinal Food, 16(11), 1000-1007.

Wang, Y., Yin, H., Wang, L., Shang, P., & Xiao, H. (2019). Tremella fuciformis polysaccharide attenuates LPS-induced inflammation in BV2 microglia cells through regulating TLR4-MyD88-mediated NF-κB and MAPK signaling pathways. Carbohydrate polymers, 209, 308-316.

Xu X, Yasuda M, Nakamura-Tsuruta S, Mizuno M, Ashida H. β-Glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-α production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages. J Biol Chem. 2012 Jan 6;287(2):871-8. doi: 10.1074/jbc.M111.297887. Epub 2011 Nov 18. PMID: 22102286; PMCID: PMC3256862.

Noh EM, Kim JS, Hur H, Park BH, Song EK, Han MK, Kwon KB, Yoo WH, Shim IK, Lee SJ, Youn HJ, Lee YR. Cordycepin inhibits IL-1beta-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology (Oxford). 2009 Jan;48(1):45-8. doi: 10.1093/rheumatology/ken417. PMID: 19056796. 

Rahman MM, Kim H-K, Kim S-E, Kim M-J, Kim D-H, Lee HS. Chondroprotective Effects of a Standardized Extract (KBH-JP-040) from Kalopanax pictus, Hericium erinaceus, and Astragalus membranaceus in Experimentally Induced In Vitro and In Vivo Osteoarthritis Models. Nutrients. 2018; 10(3):356.

Shin, S., et al., Role of Cordycepin and Adenosine on the Phenotypic Switch of Macrophages via Induced Anti-inflammatory Cytokines. Immune Netw, 2009. 9 (6): p. 255-64.

Mallard B, Leach D. N, Wohlmuth H, Tiralongo J. Synergistic immuno-modulatory activity in human macrophages of a medicinal mushroom formulation consisting of Reishi, Shiitake and Maitake. PLoS ONE. 2019;14(11).

Kathleen F. Benson, Paul Stamets, Renee Davis, Regan Nally, Alex Taylor, Sonya Slater & Gitte S. Jensen, K. (2019, December 2). The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro - BMC Complementary Medicine and Therapies. BioMed Central. https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-019-2681-7

Yeon-Ran Kim. (2005, September). Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus. National Library of Medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774877/

Shao-Hua Shi, Wen-Tao Yang, Ke-Yan Huang, Yan-Long Jiang, Gui-Lian Yang, Chun-Feng Wang, Yu Li. (2016, May). β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages. ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0141813016300605?via%3Dihub

Danka Matijašević, Milena Pantić, Božidar Rašković, Vladimir Pavlović, Dunja Duvnjak, Aleksandra Sknepnek, And Miomir Nikšić, D. (2016, August 4). The Antibacterial Activity of Coriolus versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella Enteritidisf. Frontiers. https://www.frontiersin.org/articles/10.3389/fmicb.2016.01226/full

Shao-Hua Shi, Wen-Tao Yang, Ke-Yan Huang, Yan-Long Jiang, Gui-Lian Yang, Chun-Feng Wang, Yu Li. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages. International Journal of Biological Macromolecules, Volume 86, 2016, Pages 352-361. ISSN 0141-8130.

Oh K. W, Lee C. K, Kim Y. S, Eo S. K, Han S. S. Antiherpetic activities of acidic protein bound polysaccharide isolated from Ganoderma lucidum alone and in combination with Acyclovir and Vidarabine. J Ethnopharmacol. 2000;72:221–7.

El-Mekkawy S, Meselhy M. R, Nakamura N, editors. et al. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. 1998;49:1651–7.

Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients. 2021 Nov 6;13(11):3960. doi: 10.3390/nu13113960. PMID: 34836215; PMCID: PMC8623785.

Antioxidants & DNA Damage

Han, B., Baruah, K., Cox, E., Vanrompay, D., & Bossier, P. (2020). Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Frontiers in immunology, 11, 658. https://doi.org/10.3389/fimmu.2020.00658

Akramiene, D., Kondrotas, A., Didziapetriene, J., & Kevelaitis, E. (2007). Effects of beta-glucans on the immune system. Medicina (Kaunas, Lithuania), 43(8), 597–606.

Guggenheim AG, Wright KM, Zwickey HL. Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology. Integr Med (Encinitas). 2014 Feb;13(1):32-44. PMID: 26770080; PMCID: PMC4684115.

Wu, D., Yang, S., Tang, C., Liu, Y., Li, Q., Zhang, H., Cui, F., & Yang, Y. (2018). Structural Properties and Macrophage Activation of Cell Wall Polysaccharides from the Fruiting Bodies of Hericium erinaceus. Polymers, 10(8), 850. https://doi.org/10.3390/polym10080850

Lee JS, Min KM, Cho JY, Hong EK. Study of macrophage activation and structural characteristics of purified polysaccharides from the fruiting body of Hericium erinaceus. J Microbiol Biotechnol. 2009;19:951–9.

Xiao Chen, Ze-Ping Hu, Xiao-Xia Yang, Min Huang, Yihuai Gao, Wenbo Tang, Sui Yung Chan, Xihu Dai, Jinxian Ye, Paul Chi-Liu Ho, Wei Duan, Hong-Yuan Yang, Yi-Zhun Zhu, Shu-Feng Zhou. (2006, March). Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. ScienceDirect. https://pubmed.ncbi.nlm.nih.gov/16428086/

Wong KH, Sabaratnam V, Abdullah N, Kuppusamy UR, Naidu M. Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.:Fr.) Pers. extracts. Food Technol Biotechnol. 2009;47:47–55.

Rašeta M, Popović M, Knežević P, Šibul F, Kaišarević S, Karaman M. Bioactive Phenolic Compounds of Two Medicinal Mushroom Species Trametes versicolor and Stereum subtomentosum as Antioxidant and Antiproliferative Agents. Chem Biodivers. 2020 Dec;17(12):e2000683. doi: 10.1002/cbdv.202000683. Epub 2020 Nov 17. PMID: 33058392. 

UHN Staff, U. (2020, March 25). Chaga Benefits That Are Not Found in Any Other Herb. University Health News. https://universityhealthnews.com/daily/nutrition/chaga-benefits-that-are-not-found-in-any-other-herb/

Jehane Ibrahim Eid, Swabhiman Mohanty, Biswadeep Das, J. I. (2020, January 1). Genoprotective effects of Chaga mushroom (Inonotus obliquus) polysaccharides in UVB-exposed embryonic zebrafish (Danio rerio) through coordinated expression of DNA repair genes. bioRxiv. https://www.biorxiv.org/content/10.1101/2020.06.19.161182v1.full

Yiling Hou, Y., Xiang Ding, & Wanru Hou. (2014, December 19). Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Spandidos Publications. https://www.spandidos-publications.com/10.3892/mmr.2014.3121

Deng-Bo Ji, Jia Ye,Chang-Ling Li, Yu-Hua Wang, Jiong Zhao, Shao-Qing Cai. (2008, September 19). Antiaging effect of Cordyceps sinensis extract. Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/ptr.2576

Ma X, Yang M, He Y, Zhai C, Li C. A review on the production, structure, bioactivities and applications of Tremella polysaccharides. Int J Immunopathol Pharmacol. 2021 Jan-Dec;35:20587384211000541. doi: 10.1177/20587384211000541. PMID: 33858263; PMCID: PMC8172338.